
February 11, 2024 draft 665

We give the statement of Theorem 23.2.9 for simplicity, as we will only use this
version.

23.2.11. Corollary. — If A has enough injectives, and F is a left-exact covariant functor
A → B, then the RiF (with the δi that accompany them) form a universal δ-functor.

Proof. Each element of A admits a monomorphism into an injective element; this is
just the definition of “enough injectives” (Exercise 23.2.C). Higher derived functors
of an injective elements I are always 0: just compute the higher derived functor by
taking the injective resolution of I “by itself”. !

23.3 Derived functors and spectral sequences

A number of useful facts can be easily proved using spectral sequences. By
doing these exercises, you will lose any fear of spectral sequence arguments in
similar situations, as you will realize they are all the same.

Before you read this section, you should read §1.7 on spectral sequences.

23.3.1. Symmetry of Tor.

23.3.A. EXERCISE (SYMMETRY OF Tor). Show that there is an isomorphism TorAi (M,N)
∼←→

TorAi (N,M). (Hint: take a free resolution of M and a free resolution of N. Take
their “product” to somehow produce a double complex. Use both orientations of
the obvious spectral sequence and see what you get.)

On a related note:

23.3.B. EXERCISE. Show that the two definitions of Exti(M,N) given in Exer-
cises 23.2.D and 23.2.E agree.

23.3.2. Derived functors can be computed using acyclic resolutions. Suppose
F : A → B is a right-exact additive functor of abelian categories, and that A has
enough projectives. We say that A ∈ A is F-acyclic (or just acyclic if the F is clear
from context) if LiF A = 0 for i > 0. In Exercise 23.3.D, we will see that derived
functors LiF B of an object B of A can be computed by using “acyclic resolutions”.
We set the stage with a useful construction.

23.3.3. Building a “projective resolution” of an exact sequence. Suppose · · · → E2 →
E1 → E0 → 0 is an exact sequence in an abelian category with enough projectives.
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We explain how to inductively build a double complex of projectives

...

!!

...

!!

...

!!
· · · "" P2,1

!!

"" P1,1

!!

"" P0,1

!!

"" 0

· · · "" P2,0

!!

"" P1,0

!!

"" P0,0

!!

"" 0

· · · "" E2

!!

"" E1

!!

"" E0

!!

"" 0

0 0 0

such that the rows and columns are all exact. Suppose you have built part of the
complex, and are trying to build the Pm,n term:

(23.3.3.1) ? ""

!!

Pm−1,n
""

!!

Pm−2,n

!!
Pm,n−1

""

!!

Pm−1,n−1

!!

"" Pm−2,n−1

Pm,n−2
"" Pm−1,n−2

For reasons that will soon become clear, we assume that for any b ∈ Pm−1,n−1

whose image in both Pm−1,n−2 and Pm−2,n−1 is zero, there is c ∈ Pm,n−1 whose
image in Pm−1,n−1 is b, and whose image in Pm,n−2 is zero; and symmetrically
there is c ′ ∈ Pm−1,n whose image in Pm−1,n−1 is b, and whose image in Pm−2,n

is zero.
Consider

K := ker(Pm,n−1 ⊕ Pm−1,n → Pm,n−2 ⊕ Pm−1,n−1 ⊕ Pm−2,n).

If K surjects onto both ker(Pm−1,n → Pm−2,n) and ker(Pm,n−1 → Pm,n−2), then
we could take any surjection from a projective object P " K, then take Pm,n to be
P (with its map to Pm,n−1 and the negative of its map to Pm−1,n). With this choice,
we would have ensured “horizontal exactness” at Pm−1,n, and “vertical exactness”
at Pm,n−1, and commutativity of the square in (23.3.3.1).

We now verify our two desired surjections, by “diagram-chasing” (which we
may do, see §1.6.5). Suppose a ∈ ker(Pm−1,n → Pm−2,n), and let b be its image
in Pm−1,n−1. We wish to find c ∈ ker(Pm,n−1 → Pm,n−2) so that c maps to b in
Pm−1,n−1 and 0 in Pm,n−2. (Then (−c, a) ∈ Pm,n−1⊕Pm−1,n would be our desired
element of K mapping to a ∈ Pm−1,n). But such a c exits by our assumption! And
symmetrically, we get surjectivity K " ker(Pm,n−1 → Pm,n−2).

The final task is to ensure these assumptions hold for later stages in the build-
ing of our double complex. We need to ensure that for any b ′ ∈ Pm−1,n that
maps to (0, 0) ∈ Pm−1,n−1 ⊕ Pm−2,n, there is an element of Pm,n mapping to
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(0, b ′) ∈ Pm,n−1 ⊕ Pm−1,n. And we have to ensure the analogous statement with
the roles of m and n reversed. We take Q ′ = ker(Pm−1,n → Pm−1,n−1 ⊕ Pm−2,n),
and Q ′′ = ker(Pm,n−1 → Pm,n−2 ⊕ Pm−1,n−1), and take surjections P ′ " Q ′ and
P ′′ " Q ′′ from projective objects. Then take Pm,n to be P ⊕ P ′ ⊕ P ′′, where the
maps from P to Pm,n−1 and Pm−1,n are as described above; the map P ′ to Pm−1,n

is the above-described map (via Q ′); the map P ′ to Pm,n−1 is zero; and the oppo-
site for P ′′ (the map to Pm−1,n is zero, and the map to Pm,n−1 is as implied above,
by way of Q ′′). The summand P ′ ensures our first desired assumption, and the
summand P ′′ ensures our second.

23.3.C. EXERCISE. Verify that the above construction indeed gives a projective
resolution of an exact sequence. Where did you use that the sequence E• was
exact?

Now let’s apply this.

23.3.D. EXERCISE. Show that you can compute the derived functors of an objects
B of A using acyclic resolutions (not just projective resolutions), i.e., by taking a
resolution

(23.3.3.2) · · · "" A2
"" A1

"" A0
"" B "" 0

by F-acyclic objects Ai, truncating, applying F, and taking homology. Hence Tori(M,N)
can be computed with a flat resolution of M or N. Hint: as describe above, build
a double complex of projectives “on top of” the exact sequence (23.3.3.2). Remove
the bottom row, and the right-most nonzero column, and then apply F, to obtain a
new double complex. Use a spectral sequence argument to show that (i) the dou-
ble complex has homology equal to LiF(B), and (ii) the homology of the double
complex agrees with the construction given in the statement of the exercise. If this
is too confusing, read more about the Cartan-Eilenberg resolution below.

23.3.4. The Grothendieck composition-of-functors spectral sequence.
Suppose A , B, and C are abelian categories, F : A → B and G : B → C are a

left-exact additive covariant functors, and A and B have enough injectives. Thus
right derived functors of F, G, and G ◦ F exist. A reasonable question is: how are
they related?

23.3.5. Theorem (Grothendieck composition-of-functors spectral sequence). —
Suppose F : A → B and G : B → C are left-exact additive covariant functors, and
A and B have enough injectives. Suppose further that F sends injective elements of A
to G-acyclic elements of B. Then for each X ∈ A , there is a spectral sequence with
→Ep,q

2 = RqG(RpF(X)) converging to R•(G ◦ F)(X).

We will soon see the Leray spectral sequence as an application (Theorem 23.4.5).

There is more one might want to extract from the proof of Theorem 23.3.5. For
example, although E0 page of the spectral sequence will depend on some choices
(of injective resolutions), the E2 page will be independent of choice. For our appli-
cations, we won’t need this refinement.

We will have to work to establish Theorem 23.3.5, so the proof is possibly best
skipped on a first reading.


