$(=\operatorname{char} \mathrm{K}(\mathrm{X}))$ is zero. Then there is a nonempty (=dense) open set $\mathrm{U} \subset \mathrm{X}$ such that $\left.\pi\right|_{\mathrm{u}}$ is smooth of relative dimension trdeg $\mathrm{K}(\mathrm{X}) / \mathrm{K}(\mathrm{Y})$.
(b) Let k be a field of characteristic 0 , and let $\pi: \mathrm{X} \rightarrow \mathrm{Y}$ be a dominant morphism of integral k -varieties. Then there is a nonempty (=dense) open set $\mathrm{U} \subset \mathrm{X}$ such that $\left.\pi\right|_{\mathrm{u}}$ is smooth of relative dimension $\operatorname{dim} \mathrm{X}-\operatorname{dim} \mathrm{Y}$.
21.6.C. EXERCISE (PROMISED IN EXERCISE 12.2.D). Suppose $f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of characteristic 0 . Show that f_{1}, \ldots, f_{n} are algebraically dependent if and only if the determinant of the Jacobian matrix is identically zero. Hint: Why is this exercise given just after Theorem 21.6.4?
21.6.5. Example. Theorem 21.6 .4 fails in positive characteristic: consider the purely inseparable extension $\mathbb{F}_{\mathfrak{p}}(\mathrm{t}) / \mathbb{F}_{\mathfrak{p}}\left(\mathfrak{t}^{p}\right)$. The same problem can arise even over an algebraically closed field of characteristic $p:$ consider $\mathbb{A}_{k}^{1}=\operatorname{Spec} k[t] \rightarrow$ Spec $k[u]=$ \mathbb{A}_{k}^{1}, given by $u \mapsto t^{p}$.

Proof. Let $n=\operatorname{trdeg} K(Y) / K(X)$. We may replace Y by an affine open subset Spec B, and then replace X by an affine open subset $\operatorname{Spec} A$, so π corresponds to the ring $\operatorname{map} B \rightarrow A$. Choose n elements $x_{1}, \ldots, x_{n} \in A$ that form a transcendence basis for $K(A) / K(B)$. (Do you see why we may choose them to lie in A ?) Choose additional elements $x_{n+1}, \ldots, x_{N} \in A$ so that x_{1}, \ldots, x_{N} generate A as a B-algebra.

For $i=0, \ldots, n$, let F_{i} be the subfield of $K(A)$ generated over $K(B)$ by x_{1}, \ldots, x_{i}. For example, $F_{0}=K(B), F_{N}=K(A)$, and $F_{i} / K(B)$ is a purely transcendental field extension for $i \leq n$. For $i=n+1, \ldots, N$, the minimal polynomial for $x_{i} \in K(A)$ over F_{i-1} (an element of $F_{i-1}[t]$) may be interpreted as $m_{i}\left(x_{1}, \ldots, x_{i-1}, t\right)$ for some $m_{i} \in K(B)\left[y_{1}, \ldots, y_{i-1}, t\right]$. By multiplying m_{i} by the products of the denominators of its coefficients, we obtain $M_{i} \in B\left[y_{1}, \ldots, y_{i-1}, t\right]$ so that $M_{i}\left(x_{1}, \ldots, x_{i-1}, t\right) \in$ $F_{i-1}[t]$ is also a minimal polynomial for $x_{i} \in K(A)$ over F_{i-1}. Thus

$$
\begin{equation*}
K(A)=K(B)\left(x_{1}, \ldots, x_{n}\right)\left[y_{n+1}, \ldots, y_{N}\right] / I \tag{21.6.5.1}
\end{equation*}
$$

where
$I=\left(M_{n+1}\left(x_{1}, \ldots, x_{n}, y_{n+1}\right), M_{n+2}\left(x_{1}, \ldots, x_{n}, y_{n+1}, y_{n+2}\right), \ldots, M_{N}\left(x_{1}, \ldots, x_{n}, y_{n+1}, \ldots, y_{N}\right)\right)$.
Define $A^{\prime}:=B\left[y_{1}, \ldots, y_{N}\right] /\left(M_{n+1}\left(y_{1}, \ldots, y_{n+1}\right), \ldots, M_{N}\left(y_{1}, \ldots, y_{N}\right)\right)$.
Let $X^{\prime}:=\operatorname{Spec} A^{\prime}$. Let Z_{1}, \ldots, Z_{s} be the irreducible components of X^{\prime}. (There are finitely many by Noetherianity of B: Exercise 3.6.T and Proposition 3.6.15.) Precisely one of them, say $Z=Z_{1}$, dominates Spec B (because $A^{\prime} \otimes_{B} K(B) \cong K(A)$ by (21.6.5.1)). Let $U^{\prime} \subset X^{\prime}$ be the open subset $Z_{1} \backslash Z_{1} \cap\left(Z_{2} \cup \cdots Z_{s}\right)$.

At the generic point of U^{\prime}, the Jacobian matrix of $M_{n+1}\left(x_{n+1}\right), \ldots, M_{N}\left(x_{N}\right)$ with respect to x_{1}, \ldots, x_{N} has corank n. (Here we use the separability of the minimal polynomials M_{i}.) Thus there is an open subset $\mathrm{U}^{\prime \prime} \subset \mathrm{U}^{\prime}$ where the Jacobian has corank n, so $\mathrm{U}^{\prime \prime} \rightarrow$ Spec B is smooth of relative dimension n. Furthermore $\mathrm{U}^{\prime \prime}$ is irreducible. Now $\mathrm{U}^{\prime \prime}$ and X are birational, so by Proposition 7.5.5 there is an open subset $\mathrm{U} \subset X$ that is isomorphic to an open subset of $\mathrm{U}^{\prime \prime}$. This is the open subset we seek.
21.6.D. EXERCISE. Prove Theorem 21.6.4 (b) (using part (a)).

If furthermore X is smooth, the situation is even better.

