and any scheme maps to Spec \mathbb{Z}, this implies that $\Omega_{\mathbb{P}_{B}^{1} / \mathrm{B}} \cong \mathscr{O}_{\mathbb{P}_{\mathrm{B}}^{1}}(-2)$ for any base scheme B.
(Also, as suggested by $\S 18.5 .2$, this shows that $\Omega_{\mathbb{P}^{1} / k}$ is the dualizing sheaf for \mathbb{P}_{k}^{1}; see also Example 18.5.4. But given that we haven't yet proved Serre duality, this isn't so meaningful.)

Side Remark: the fact that the degree of the tangent bundle is 2 is related to the "Hairy Ball Theorem" (the dimension 2 case of [Hat, Thm. 2.28]).
21.3.3. Hyperelliptic curves. Throughout this discussion of hyperelliptic curves, we suppose that $k=\bar{k}$ and char $k \neq 2$, so we may apply the discussion of $\S 19.5$. Consider a double cover π : $C \rightarrow \mathbb{P}_{k}^{1}$ by a regular projective curve C, branched over $2 g+2$ distinct points. We will use the explicit coordinate description of hyperelliptic curves of (19.5.2.1). In particular, π is unbranched at 0 . By Theorem 19.5.1, C has genus g .
21.3.B. EXERCISE: DIFFERENTIALS ON HYPERELLIPTIC CURVES. What is the degree of the invertible sheaf $\Omega_{C / k}$? (Hint: let x be a coordinate on one of the coordinate patches of \mathbb{P}_{k}^{1}. Consider $\pi^{*} \mathrm{dx}$ on C , and count poles and zeros. Use the explicit coordinates of $\S 19.5$. You should find that $\pi^{*} d x$ has $2 g+2$ zeros and 4 poles, counted with multiplicity, for a total of $2 g-2$.) Doing this exercise will set you up well for the Riemann-Hurwitz formula, in $\S 21.4$.
21.3.C. EXERCISE. Show that $h^{0}\left(\mathrm{C}, \Omega_{\mathrm{C} / \mathrm{k}}\right)=\mathrm{g}$ (and hence that the geometric genus of C is g) as follows.
(a) Show that any regular differential ω on $\operatorname{Spec} k[x, y] /\left(y^{2}-f(x)\right)$ (i.e., an element of $\left.\Omega_{\left(k[x, y] /\left(y^{2}-f(x)\right)\right) / k}\right)$ preserved by the involution $y \mapsto-y$ is pulled back from a differential on Spec $k[x]$. (Hint: make sense of the statement " ω / dx is a rational function on Spec $k[x, y] /\left(y^{2}-f(x)\right)$ preserved by the involution $y \mapsto-y^{\prime \prime}$ and show that $\omega / d x$ is a rational function in x.)
(b) Use (a) to show that any differential $\omega \in \mathrm{H}^{0}\left(\mathrm{C}, \Omega_{\mathrm{C} / \mathrm{k}}\right)$ preserved by the involution $\mathfrak{i}: y \mapsto-y$ must be pulled back from \mathbb{P}^{1} by π, and hence must be zero. Show that every differential $\omega \in \mathrm{H}^{0}\left(\mathrm{C}, \Omega_{\mathrm{C} / k}\right)$ satisfies $i^{*} \omega=-\omega$.
(c) Show that $\frac{d x}{y}$ is a (regular) differential on Spec $k[x, y] /\left(y^{2}-f(x)\right)$. Show that for $0 \leq i<g, x^{i}(d x) / y$ extends to a global differential ω_{i} on C (i.e., with no poles).
(d) Show that the $\omega_{i}(0 \leq i<g)$ are linearly independent differentials, i.e., linearly independent in the vector space $H^{0}\left(C, \Omega_{C / k}\right)$. (Hint: Let $\{p, q\}=\pi^{-1}(0)$. Show that the valuation of ω_{i} at both p and q is i. If $\omega:=\sum_{j=s}^{g-1} a_{j} \omega_{j}$ is a nontrivial linear combination of the ω_{i}, with $a_{j} \in k$, and $a_{s} \neq 0$, show that the valuation of ω at p is s, and hence $\omega \neq 0$.)
(e) Show that the ω_{i} span the vector space of differentials $H^{0}\left(C, \Omega_{C / k}\right)$. (Hint: if $\omega \in H^{0}\left(C, \Omega_{C / k}\right)$ use (d) to show that there are unique a_{i} such that $\omega^{\prime}:=$ $\omega-\sum_{i=0}^{g-1} a_{i} \omega_{i}$ vanishes at p to order $\geq g$. By (b), ω^{\prime} also vanishes at q to the same order. Use Exercise 21.3.B to show that ω^{\prime} must be zero.)

Hence $\Omega_{C / k}$ is an invertible sheaf of degree $2 g-2$ with g sections.
21.3.D. \star EXERCISE (TOWARD SERRE DUALITY). (You may later see this as an example of Serre duality in action.)
(a) Show that $h^{1}\left(C, \Omega_{C / k}\right)=1$. Interpret a generator of $H^{1}\left(C, \Omega_{C / k}\right)$ as $x^{-1} d x$. (In

