$\mathbb{A}^{1}, C^{\prime} \rightarrow \mathbb{A}^{1}$, where x is the coordinate on \mathbb{A}^{1}. This induces a quadratic field extension K over $k(x)$. As char $k \neq 2$, this extension is Galois. Let $\sigma: K \rightarrow K$ be the Galois involution. Let y be a nonzero element of K such that $\sigma(y)=-y$, so 1 and y form a basis for K over the field $k(x)$, and are eigenvectors of σ. Now $\sigma\left(y^{2}\right)=y^{2}$, so $y^{2} \in k(x)$. We can replace y by an appropriate $k(x)$-multiple so that y^{2} is a polynomial, with no repeated factors, and monic. (This is where we use the hypothesis that k is algebraically closed, to get leading coefficient 1.)

Thus $y^{2}=x^{N}+a_{N-1} x^{N-1}+\cdots+a_{0}$, where the polynomial on the right (call it $f(x)$) has no repeated roots. The Jacobian criterion for regularity (in the guise of Exercise 13.2.F) implies that this curve C_{0}^{\prime} in $\mathbb{A}^{2}=\operatorname{Spec} k[x, y]$ is regular. Then C_{0}^{\prime} is normal and has the same function field as C^{\prime}. Thus C_{0}^{\prime} and C^{\prime} are both normalizations of \mathbb{A}^{1} in the finite extension of fields generated by y, and hence are isomorphic. Thus we have identified C^{\prime} in terms of an explicit equation.

The branch points correspond to those values of x for which there is exactly one value of y, i.e., the roots of $f(x)$. In particular, $N=r$, and

$$
f(x)=\left(x-p_{1}\right) \cdots\left(x-p_{r}\right)
$$

where the p_{i} are interpreted as elements of \bar{k}.
Having mastered the situation over \mathbb{A}^{1}, we return to the situation over \mathbb{P}^{1}. We will examine the branched cover over the affine open set $\mathbb{P}^{\mathbf{1}} \backslash\{0\}=$ Spec $k[u]$, where $u=1 / x$. The previous argument applied to Spec $k[u]$ rather than Spec $k[x]$ shows that any such double cover must be of the form

$$
\begin{aligned}
C^{\prime \prime} & =\operatorname{Spec} k[Z, u] /\left(Z^{2}-\left(u-1 / p_{1}\right) \cdots\left(u-1 / p_{r}\right)\right) \\
& =\operatorname{Spec} k[Z, u] /\left(\left((-1)^{r} \prod p_{i}\right) Z^{2}-u^{r} f(1 / u)\right) \\
& \longrightarrow \text { Spec } k[u]=\mathbb{A}^{1} .
\end{aligned}
$$

So if there is a double cover over all of \mathbb{P}^{1}, it must be obtained by gluing $C^{\prime \prime}$ to C^{\prime}, "over" the gluing of Spec $k[x]$ to Spec $k[u]$ to obtain \mathbb{P}^{1}.

Thus in $\mathrm{K}(\mathrm{C})$, we must have

$$
z^{2}=u^{r} f(1 / u)=f(x) / x^{r}=y^{2} / x^{r}
$$

(where z is obtained from Z by multiplying by a square root of $\left.(-1)^{r} \prod p_{i}\right)$ from which $z^{2}=y^{2} / x^{r}$.

If r is even, considering $K(C)$ as generated by y and x, there are two possible values of $z: z= \pm y / x^{r / 2}$. After renaming z by $-z$ if necessary, there is a single way of gluing these two patches together (we choose the positive square root).

If r is odd, the result follows from Exercise 19.5. A below.
19.5.A. EXERCISE. Suppose char $k \neq 2$. Show that x does not have a square root in the field $k(x)[y] /\left(y^{2}-f(x)\right)$, where f is a polynomial with nonzero roots p_{1}, \ldots, p_{r}. (Possible hint: why is $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$?) Explain how this proves Proposition 19.5.2 in the case where r is odd.

