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17.2.F. EXERCISE. Suppose S• is finitely generated in degree 1 (Hypotheses 17.2.1).
Describe a map of graded quasicoherent sheaves φ : S• → ⊕∞n=0β∗O(n) (β is the
structure morphism, see Exercise 17.2.C). Hint: Exercise 15.6.C.

17.2.G. EXERCISE. Suppose L is an invertible sheaf on X, and S• is a quasico-
herent sheaf of graded algebras on X generated in degree 1 (Hypotheses 17.2.1).
Define S ′

• = ⊕∞n=0 (Sn ⊗ L ⊗n). Then S ′
• has a natural algebra structure inher-

ited from S•; describe it. Give a natural isomorphism of “X-schemes with line
bundles”

(Proj S ′
• ,OProj S ′

• (1))
!! ∼ "" (Proj S•,OProj S•(1)⊗ β∗L ),

where β : Proj S• → X is the structure morphism. In other words, informally
speaking, the Proj is the same, but the O(1) is twisted by L .

17.2.3. Definition. If F is a finite rank locally free sheaf on X, then Proj (Sym• F∨)
is called its projectivization, and is denoted PF . (The reason for the dual is the
same as for Spec(Sym• F∨) in Definition 17.1.5.) You can check that this construc-
tion behaves well with respect to base change. Define Pn

X := P(O⊕(n+1)
X ). (Then

Pn
Spec A agrees with our earlier definition of Pn

A, cf. Exercise 4.5.Q, and Pn
X agrees

with our earlier usage, see for example the proof of Theorem 11.5.5.) If F is lo-
cally free of rank n + 1, then PF is a projective bundle or Pn-bundle over X. By
Exercise 17.2.G, if F is a finite rank locally free sheaf on X, there is a canonical
isomorphism PF

∼←→ P(L ⊗ F ).
More generally, if F is a finite type quasicoherent sheaf on X, then one might

define similarly its projectivization Proj (Sym• F∨). Be careful, though. For ex-
ample, if G is a torsion sheaf on an integral scheme, then F∨ = 0, so with this
definition, PF = ∅. So this isn’t a great notion.

Because there is not universal agreement on whether PF should be defined as
Sym• F or Sym• F∨, parallel to whether there can be disagreement as to whether
the projectivization of a vector space parametrizes one-dimensional subspaces or
quotients (cf. Exercise 17.2.I), it is safest to avoid the notation PF , or at least to
state at the outset which convention you are following.

17.2.4. Example: ruled surfaces. If C is a regular curve and F is locally free of
rank 2, then PF is called a ruled surface over C. If C is further isomorphic to
P1, PF is called a Hirzebruch surface. All vector bundles on P1 split as a direct
sum of line bundles (see §18.5.5 for a proof), so each Hirzebruch surface is of the
form P(O(n1) ⊕ O(n2)). By Exercise 17.2.G, this depends only on n2 − n1. The
Hirzebruch surface P(O ⊕ O(n)) (n ≥ 0) is often denoted Fn. We will discuss the
Hirzebruch surfaces in greater length in §20.2.10. We will see that the Fn are all
distinct in Exercise 20.2.Q.

17.2.H. EXERCISE. If S• is finitely generated in degree 1 (Hypotheses 17.2.1),
describe a canonical closed embedding

Proj S•

β
##!

!!
!!

!!
!!
! " i "" Proj Sym• S1

$$""
""
""
""
""

X
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and an isomorphism OProj S•(1)
∼←→ i∗OPS1

(1) arising from the surjection

Sym• S1
"" "" S• .

In particular, if S1 is locally free, then Proj Sym• S1 = PS ∨
1 , so we have embed-

ded Proj S• in a projective bundle on X.

17.2.I. EXERCISE. Suppose F is a locally free sheaf of rank n + 1 on X. Exhibit
a bijection between the set of sections s : X → PF of PF → X and the set of
surjective homomorphisms F → L → 0 of F onto invertible sheaves on X. This
functorial description of PF in some sense generalizes the functorial description
of projective space in §15.2.3.

17.2.5. Remark (the relative version of the projective and affine cone). There is a natural
morphism from Spec S• minus the zero-section to Proj S• (cf. Exercise 9.3.N). Just
as ProjS•[T ] contains a closed subscheme identified with ProjS• whose comple-
ment can be identified with SpecS• (Exercise 9.3.O), Proj S•[T ] contains a closed
subscheme identified with Proj S• whose complement can be identified with Spec S•.
You are welcome to think this through.

17.3 Projective morphisms

In §17.1, we reinterpreted affine morphisms: X → Y is an affine morphism if
there is an isomorphism X

∼←→ Spec B of Y-schemes for some quasicoherent sheaf
of algebras B on Y. We will define the notion of a projective morphism similarly.

You might think that because projectivity is such a classical notion, there should
be some obvious definition, that is reasonably behaved. But this is not the case,
and there are many possible variant definitions of projective (see [Stacks, tag
01W8]). All are imperfect, including the accepted definition we give here. Al-
though projective morphisms are preserved by base change, we will manage to
show that they are preserved by composition only when the target is quasicom-
pact (Exercise 17.3.B), and we will only show that the notion is local on the target
when we add the data of a line bundle, and even then only under locally Noether-
ian hypotheses (§17.3.4).

17.3.1. Definition. A morphism π : X→ Y is projective if there is an isomorphism

X
∼ ""

π
%%#

##
##

##
# Proj S•

&&$$
$$
$$
$$
$

Y

for a quasicoherent sheaf of algebras S• on Y (satisfying “finite generation in de-
gree 1”, Hypotheses 17.2.1). We say X is a projective Y-scheme, or X is projective
over Y. Using Exercise 7.4.D, this generalizes the notion of a projective A-scheme.

17.3.2. Warnings. First, notice that O(1), an important part of the concept of Proj ,
is not mentioned in the definition. (I would prefer that it be part of the definition,


