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15.4.14. By Exercise 15.4.G, [Z] !→ O(1), and as O(m) is nontrivial for m "= 0 (Exer-
cise 15.1.B), [Z] is not torsion in ClPn

k . Hence Pic(Pn
k ) ↪→ Cl(Pn

k ) is an isomorphism,
and Pic(Pn

k ) ∼= Z , with generator O(1). The degree of an invertible sheaf on Pn

is defined using this: define deg O(d) to be d. (You will have already proved that
Pic(Pn

k )
∼= Z if you did Exercise 15.4.H; but we will use the strategy here to great

effect in §15.5.4.)
We have gotten good mileage from the fact that the Picard group of the spec-

trum of a unique factorization domain is trivial. More generally, Exercise 15.4.K
gives us:

15.4.15. Proposition. — If X is Noetherian and factorial, then for any Weil divisor D,
O(D) is invertible, and hence the map PicX→ ClX is an isomorphism.

This can be used to make the connection to the class group in number theory
precise, see Exercise 14.2.K; see also §15.5.5.

15.4.16. Mild but important generalization: twisting line bundles by divisors.
The above constructions can be extended, with OX replaced by an arbitrary invert-
ible sheaf, as follows. Let L be an invertible sheaf on a normal Noetherian scheme
X. Then define L (D) by OX(D)⊗ L . If D is locally principal, then L (D) is a line
bundle. Notice that in this case there are two different ways of interpreting sec-
tions of L (D) over an open set, each with different advantages: as a section of
the new line bundle L (D), and as rational sections of L with constraints on poles
and zeros given by the divisor D.

15.4.L. EASY EXERCISE.
(a) Assume for convenience that X is irreducible. Show that sections of L (D) can
be interpreted as rational sections of L with zeros and poles constrained by D,
just as in (15.4.5.1):

Γ(U,L (D)) := {t nonzero rational section of L : div |Ut+D|U ≥ 0} ∪ {0}.

(b) Suppose D1 and D2 are locally principal. Show that

(O(D1))(D2) ∼= O(D1 +D2).

15.4.17. A variation of the Qcqs Lemma. The Qcqs Lemma 6.2.9, proved in
Exercise 6.2.G, has the following generalization.

15.4.M. IMPORTANT EXERCISE (TO BE USED REPEATEDLY). Suppose X is a quasi-
compact quasiseparated scheme, L is an invertible sheaf on X with section s, and
F is a quasicoherent sheaf on X. Generalizing Definition 6.2.8, let Xs be the open
subset of X where s doesn’t vanish. We interpret s as a degree 1 element of the
graded ring R(L )• := ⊕n≥0Γ(X,L ⊗n). Note that ⊕n≥0Γ(X,F ⊗OX

L ⊗n) is a
graded R(L )•-module.
(a) Describe a natural map

(
(⊕n≥0Γ(X,F ⊗OX

L ⊗n))s
)
0

!! Γ(Xs,F ).

(Possible hint: for quasicoherent sheaves, “tensor product has no need to be sheafi-
fied when restricted to affine subschemes”, Exercise 6.2.F.)
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(b) Show that this map is an isomorphism. (Hint: show this map is an isomor-
phism in the affine case.)

Translation: Any section of F over Xs can be extended to a section over X
after multiplying by some some appropriate power of s. And if we have two such
extensions, they become equal after multiplying by another appropriate power of
s.

15.5 The pay-off: Many fun examples

15.5.1. Fun examples: Projective transformations.
The fact that PicPn

k
∼= Z has many wonderful and cheap consequences.

15.5.A. EXERCISE (AUTOMORPHISMS OF PROJECTIVE SPACE). Show that all the
automorphisms of projective space Pn

k (fixing k) correspond to (n + 1) × (n +
1) invertible matrices over k, modulo scalars (also known as PGLn+1(k)). (Hint:
Suppose π : Pn

k → Pn
k is an automorphism. Show that this induces an isomorphism

π∗O(1)
∼−→ O(1). Show that π∗ : Γ(Pn,O(1))→ Γ(Pn,O(1)) is an isomorphism.)

15.5.2. Automorphisms of projective space are often called projective transforma-
tions. Because of Exercise 15.5.A, in their incarnation of matrices modulo scalars,
projective transformations are also called projective changes of coordinates. Ex-
ercise 15.5.A will be useful later, especially for the case n = 1. In this case, these
automorphisms are called fractional linear transformations. (For experts: why
was Exercise 15.5.A not stated over an arbitrary base ring A? Where does the ar-
gument go wrong in that case? For what rings A does the result still work?)

15.5.B. EXERCISE. Show that Aut(P1
k) is strictly three-transitive on k-valued

points, i.e., given two triplets (p1, p2, p3) and (q1, q2, q3) each of distinct k-valued
points of P1, there is precisely one automorphism of P1 sending pi to qi (i =
1, 2, 3).

15.5.C. EXERCISE. Solve these problems over an arbitrary field k.
(a) Find a linear fractional transformation f(t) ∈ PGL(2) that has order precisely 3
in PGL(2).
(b) Show that any two order 3 elements of PGL(2) are conjugate. (Possible hint:
use transitivity.)

15.5.D. EXERCISE. Suppose p0, . . . , pn+1 are n + 2 distinct k-valued points of
Pn
k , no n + 1 of which lie on a hyperplane. Show that there is a unique projective

transformation taking pi (0 ≤ i ≤ n) to [0, . . . , 0, 1, 0, . . . , 0] (where the 1 is in the
ith position), and taking pn+1 to [1, . . . , 1].

15.5.E. FUN EXERCISE. Suppose X is a quasiprojective k-scheme, and π : Pn
k →

X is any morphism (over k). Show that either the image of π has dimension n,
or π contracts Pn

k to a point. In particular, there are no nonconstant maps from
projective space to a smaller-dimensional quasi-projective variety. Hint: show that
it suffices to assume k is algebraically closed, and in particular, infinite. If X ⊂ PN,


