15.4.14. By Exercise 15.4.G, $[Z] \mapsto \mathscr{O}(1)$, and as $\mathscr{O}(m)$ is nontrivial for $m \neq 0$ (Exercise 15.1.B), $[Z]$ is not torsion in $\mathrm{Cl} \mathbb{P}_{\mathrm{k}}^{n}$. Hence $\operatorname{Pic}\left(\mathbb{P}_{\mathrm{k}}^{n}\right) \hookrightarrow \mathrm{Cl}\left(\mathbb{P}_{\mathrm{k}}^{n}\right)$ is an isomorphism, and $\operatorname{Pic}\left(\mathbb{P}_{k}^{n}\right) \cong \mathbb{Z}$, with generator $\mathscr{O}(1)$. The degree of an invertible sheaf on \mathbb{P}^{n} is defined using this: define $\operatorname{deg} \mathscr{O}(d)$ to be d. (You will have already proved that $\operatorname{Pic}\left(\mathbb{P}_{k}^{n}\right) \cong \mathbb{Z}$ if you did Exercise 15.4.H; but we will use the strategy here to great effect in §15.5.4.)

We have gotten good mileage from the fact that the Picard group of the spectrum of a unique factorization domain is trivial. More generally, Exercise 15.4.K gives us:
15.4.15. Proposition. - If X is Noetherian and factorial, then for any Weil divisor D, $\mathscr{O}(\mathrm{D})$ is invertible, and hence the map $\mathrm{Pic} \mathrm{X} \rightarrow \mathrm{ClX}$ is an isomorphism.

This can be used to make the connection to the class group in number theory precise, see Exercise 14.2.K; see also §15.5.5.
15.4.16. Mild but important generalization: twisting line bundles by divisors. The above constructions can be extended, with \mathscr{O}_{X} replaced by an arbitrary invertible sheaf, as follows. Let \mathscr{L} be an invertible sheaf on a normal Noetherian scheme X. Then define $\mathscr{L}(\mathrm{D})$ by $\mathscr{O}_{\mathrm{X}}(\mathrm{D}) \otimes \mathscr{L}$. If D is locally principal, then $\mathscr{L}(\mathrm{D})$ is a line bundle. Notice that in this case there are two different ways of interpreting sections of $\mathscr{L}(\mathrm{D})$ over an open set, each with different advantages: as a section of the new line bundle $\mathscr{L}(\mathrm{D})$, and as rational sections of \mathscr{L} with constraints on poles and zeros given by the divisor D .
15.4.L. EASY EXERCISE.
(a) Assume for convenience that X is irreducible. Show that sections of $\mathscr{L}(\mathrm{D})$ can be interpreted as rational sections of \mathscr{L} with zeros and poles constrained by D, just as in (15.4.5.1):

$$
\Gamma(\mathrm{U}, \mathscr{L}(\mathrm{D})):=\left\{\mathrm{t} \text { nonzero rational section of } \mathscr{L}:\left.\operatorname{div}\right|_{\mathrm{u}} \mathrm{t}+\left.\mathrm{D}\right|_{\mathrm{u}} \geq 0\right\} \cup\{0\} .
$$

(b) Suppose D_{1} and D_{2} are locally principal. Show that

$$
\left(\mathscr{O}\left(\mathrm{D}_{1}\right)\right)\left(\mathrm{D}_{2}\right) \cong \mathscr{O}\left(\mathrm{D}_{1}+\mathrm{D}_{2}\right)
$$

15.4.17. A variation of the Qcqs Lemma. The Qcqs Lemma 6.2.9, proved in Exercise 6.2.G, has the following generalization.
15.4.M. Important EXercise (TO be used repeatedly). Suppose X is a quasicompact quasiseparated scheme, \mathscr{L} is an invertible sheaf on X with section s, and \mathscr{F} is a quasicoherent sheaf on X. Generalizing Definition 6.2.8, let X_{s} be the open subset of X where s doesn't vanish. We interpret s as a degree 1 element of the graded ring $R(\mathscr{L})_{\bullet}:=\oplus_{n \geq 0} \Gamma\left(X, \mathscr{L}^{\otimes n}\right)$. Note that $\oplus_{n \geq 0} \Gamma\left(X, \mathscr{F} \otimes_{\mathscr{O}_{x}} \mathscr{L}^{\otimes n}\right)$ is a graded $R(\mathscr{L})$ •-module.
(a) Describe a natural map

$$
\left(\left(\oplus_{n \geq 0} \Gamma\left(X, \mathscr{F} \otimes_{\mathscr{O}_{x}} \mathscr{L}^{\otimes n}\right)\right)_{s}\right)_{0} \longrightarrow \Gamma\left(X_{s}, \mathscr{F}\right)
$$

(Possible hint: for quasicoherent sheaves, "tensor product has no need to be sheafified when restricted to affine subschemes", Exercise 6.2.F.)
(b) Show that this map is an isomorphism. (Hint: show this map is an isomorphism in the affine case.)

Translation: Any section of \mathscr{F} over X_{s} can be extended to a section over X after multiplying by some some appropriate power of s. And if we have two such extensions, they become equal after multiplying by another appropriate power of s.

15.5 The pay-off: Many fun examples

15.5.1. Fun examples: Projective transformations.

The fact that Pic $\mathbb{P}_{k}^{n} \cong \mathbb{Z}$ has many wonderful and cheap consequences.
15.5.A. EXERCISE (AUTOMORPHISMS OF PROJECTIVE SPACE). Show that all the automorphisms of projective space \mathbb{P}_{k}^{n} (fixing k) correspond to $(n+1) \times(n+$ 1) invertible matrices over k, modulo scalars (also known as $P^{2} L_{n+1}(k)$). (Hint: Suppose $\pi: \mathbb{P}_{k}^{n} \rightarrow \mathbb{P}_{k}^{n}$ is an automorphism. Show that this induces an isomorphism $\pi^{*} \mathscr{O}(1) \xrightarrow{\sim} \mathscr{O}(1)$. Show that $\pi^{*}: \Gamma\left(\mathbb{P}^{n}, \mathscr{O}(1)\right) \rightarrow \Gamma\left(\mathbb{P}^{n}, \mathscr{O}(1)\right)$ is an isomorphism.)
15.5.2. Automorphisms of projective space are often called projective transformations. Because of Exercise 15.5.A, in their incarnation of matrices modulo scalars, projective transformations are also called projective changes of coordinates. Exercise 15.5.A will be useful later, especially for the case $n=1$. In this case, these automorphisms are called fractional linear transformations. (For experts: why was Exercise 15.5. A not stated over an arbitrary base ring A ? Where does the argument go wrong in that case? For what rings A does the result still work?)
15.5.B. EXERCISE. Show that $\operatorname{Aut}\left(\mathbb{P}_{k}^{1}\right)$ is strictly three-transitive on k-valued points, i.e., given two triplets $\left(p_{1}, p_{2}, p_{3}\right)$ and $\left(q_{1}, q_{2}, q_{3}\right)$ each of distinct k-valued points of \mathbb{P}^{1}, there is precisely one automorphism of \mathbb{P}^{1} sending p_{i} to $q_{i}(i=$ $1,2,3)$.
15.5.C. EXERCISE. Solve these problems over an arbitrary field k.
(a) Find a linear fractional transformation $f(t) \in P G L(2)$ that has order precisely 3 in PGL(2).
(b) Show that any two order 3 elements of PGL(2) are conjugate. (Possible hint: use transitivity.)
15.5.D. EXERCISE. Suppose p_{0}, \ldots, p_{n+1} are $n+2$ distinct k-valued points of \mathbb{P}_{k}^{n}, no $n+1$ of which lie on a hyperplane. Show that there is a unique projective transformation taking $p_{i}(0 \leq i \leq n)$ to $[0, \ldots, 0,1,0, \ldots, 0]$ (where the 1 is in the i th position), and taking p_{n+1} to $[1, \ldots, 1]$.
15.5.E. FUN EXERCISE. Suppose X is a quasiprojective k-scheme, and $\pi: \mathbb{P}_{k}^{n} \rightarrow$ X is any morphism (over k). Show that either the image of π has dimension n, or π contracts \mathbb{P}_{k}^{n} to a point. In particular, there are no nonconstant maps from projective space to a smaller-dimensional quasi-projective variety. Hint: show that it suffices to assume k is algebraically closed, and in particular, infinite. If $X \subset \mathbb{P}^{N}$,

