15.4.14. By Exercise 15.4.G, $[Z] \mapsto \mathcal{O}(1)$, and as $\mathcal{O}(m)$ is nontrivial for $m \neq 0$ (Exercise 15.1.B), [Z] is not torsion in $\operatorname{Cl}\mathbb{P}_k^n$. Hence $\operatorname{Pic}(\mathbb{P}_k^n) \hookrightarrow \operatorname{Cl}(\mathbb{P}_k^n)$ is an isomorphism, and $\operatorname{Pic}(\mathbb{P}_k^n) \cong \mathbb{Z}$, with generator $\mathcal{O}(1)$. The **degree** of an invertible sheaf on \mathbb{P}^n is defined using this: define deg $\mathcal{O}(d)$ to be d. (You will have already proved that $\operatorname{Pic}(\mathbb{P}_k^n) \cong \mathbb{Z}$ if you did Exercise 15.4.H; but we will use the strategy here to great effect in §15.5.4.)

We have gotten good mileage from the fact that the Picard group of the spectrum of a unique factorization domain is trivial. More generally, Exercise 15.4.K gives us:

15.4.15. Proposition. — If X is Noetherian and factorial, then for any Weil divisor D, $\mathcal{O}(D)$ is invertible, and hence the map Pic X \rightarrow Cl X is an isomorphism.

This can be used to make the connection to the class group in number theory precise, see Exercise 14.2.K; see also §15.5.5.

15.4.16. Mild but important generalization: twisting line bundles by divisors. The above constructions can be extended, with \mathcal{O}_X replaced by an arbitrary invertible sheaf, as follows. Let \mathscr{L} be an invertible sheaf on a normal Noetherian scheme X. Then define $\mathscr{L}(D)$ by $\mathscr{O}_X(D) \otimes \mathscr{L}$. If D is locally principal, then $\mathscr{L}(D)$ is a line bundle. Notice that in this case there are two different ways of interpreting sections of $\mathscr{L}(D)$ over an open set, each with different advantages: as a section of the new line bundle $\mathscr{L}(D)$, and as rational sections of \mathscr{L} with constraints on poles and zeros given by the divisor D.

15.4.L. EASY EXERCISE.

(a) Assume for convenience that X is irreducible. Show that sections of $\mathscr{L}(D)$ can be interpreted as rational sections of \mathscr{L} with zeros and poles constrained by D, just as in (15.4.5.1):

 $\Gamma(\mathbf{U}, \mathscr{L}(\mathbf{D})) := \{ t \text{ nonzero rational section of } \mathscr{L} : div |_{\mathbf{U}} t + \mathbf{D}|_{\mathbf{U}} \ge 0 \} \cup \{ 0 \}.$

(b) Suppose D_1 and D_2 are locally principal. Show that

$$(\mathscr{O}(\mathsf{D}_1))(\mathsf{D}_2) \cong \mathscr{O}(\mathsf{D}_1 + \mathsf{D}_2).$$

15.4.17. A variation of the Qcqs Lemma. The Qcqs Lemma 6.2.9, proved in Exercise 6.2.G, has the following generalization.

15.4.M. IMPORTANT EXERCISE (TO BE USED REPEATEDLY). Suppose X is a quasicompact quasiseparated scheme, \mathscr{L} is an invertible sheaf on X with section s, and \mathscr{F} is a quasicoherent sheaf on X. Generalizing Definition 6.2.8, let X_s be the open subset of X where s doesn't vanish. We interpret s as a degree 1 element of the graded ring $R(\mathscr{L})_{\bullet} := \bigoplus_{n \ge 0} \Gamma(X, \mathscr{L}^{\otimes n})$. Note that $\bigoplus_{n \ge 0} \Gamma(X, \mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{L}^{\otimes n})$ is a graded $R(\mathscr{L})_{\bullet}$ -module.

(a) Describe a natural map

$$((\oplus_{n>0}\Gamma(X,\mathscr{F}\otimes_{\mathscr{O}_X}\mathscr{L}^{\otimes n}))_s)_0 \longrightarrow \Gamma(X_s,\mathscr{F}).$$

(Possible hint: for quasicoherent sheaves, "tensor product has no need to be sheafified when restricted to affine subschemes", Exercise 6.2.F.) (b) Show that this map is an isomorphism. (Hint: show this map is an isomorphism in the affine case.)

Translation: Any section of \mathscr{F} over X_s can be extended to a section over X after multiplying by some some appropriate power of s. And if we have two such extensions, they become equal after multiplying by another appropriate power of s.

15.5 The pay-off: Many fun examples

15.5.1. Fun examples: Projective transformations.

The fact that $\operatorname{Pic} \mathbb{P}_k^n \cong \mathbb{Z}$ has many wonderful and cheap consequences.

15.5.A. EXERCISE (AUTOMORPHISMS OF PROJECTIVE SPACE). Show that all the automorphisms of projective space \mathbb{P}_k^n (fixing k) correspond to $(n + 1) \times (n + 1)$ invertible matrices over k, modulo scalars (also known as $\mathrm{PGL}_{n+1}(k)$). (Hint: Suppose $\pi: \mathbb{P}_k^n \to \mathbb{P}_k^n$ is an automorphism. Show that this induces an isomorphism $\pi^* \mathcal{O}(1) \xrightarrow{\sim} \mathcal{O}(1)$. Show that $\pi^*: \Gamma(\mathbb{P}^n, \mathcal{O}(1)) \to \Gamma(\mathbb{P}^n, \mathcal{O}(1))$ is an isomorphism.)

15.5.2. Automorphisms of projective space are often called **projective transformations**. Because of Exercise 15.5.A, in their incarnation of matrices modulo scalars, projective transformations are also called **projective changes of coordinates**. Exercise 15.5.A will be useful later, especially for the case n = 1. In this case, these automorphisms are called **fractional linear transformations**. (For experts: why was Exercise 15.5.A not stated over an arbitrary base ring A? Where does the argument go wrong in that case? For what rings A does the result still work?)

15.5.B. EXERCISE. Show that $\operatorname{Aut}(\mathbb{P}_k^1)$ is strictly three-transitive on k-valued points, i.e., given two triplets (p_1, p_2, p_3) and (q_1, q_2, q_3) each of distinct k-valued points of \mathbb{P}^1 , there is precisely one automorphism of \mathbb{P}^1 sending p_i to q_i (i = 1, 2, 3).

15.5.C. EXERCISE. Solve these problems over an arbitrary field k. (a) Find a linear fractional transformation $f(t) \in PGL(2)$ that has order precisely 3 in PGL(2).

(b) Show that any two order 3 elements of PGL(2) are conjugate. (Possible hint: use transitivity.)

15.5.D. EXERCISE. Suppose p_0, \ldots, p_{n+1} are n + 2 distinct k-valued points of \mathbb{P}_k^n , no n + 1 of which lie on a hyperplane. Show that there is a unique projective transformation taking p_i ($0 \le i \le n$) to $[0, \ldots, 0, 1, 0, \ldots, 0]$ (where the 1 is in the ith position), and taking p_{n+1} to $[1, \ldots, 1]$.

15.5.E. FUN EXERCISE. Suppose X is a quasiprojective k-scheme, and $\pi: \mathbb{P}_k^n \to X$ is any morphism (over k). Show that either the image of π has dimension n, or π contracts \mathbb{P}_k^n to a point. In particular, there are no nonconstant maps from projective space to a smaller-dimensional quasi-projective variety. Hint: show that it suffices to assume k is algebraically closed, and in particular, infinite. If $X \subset \mathbb{P}^N$,