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6.4.6. Warning. It is not uncommon in the later literature to incorrectly define
coherent as finitely generated. Please only use the correct definition, as the wrong
definition causes confusion. Besides doing this for the reason of honesty, it will
also help you see what hypotheses are actually necessary to prove things. And
that always helps you remember what the proofs are — and hence why things are
true.

6.4.7. Why coherence? Proposition 6.4.3 is a good motivation for the definition of
coherence: it gives a small (in a non-technical sense) abelian category in which we
can think about vector bundles.

There are two sorts of people who should care about the details of this defi-
nition, rather than living in a Noetherian world where coherent means finite type.
Complex geometers should care. They consider complex-analytic spaces with the
classical topology. One can define the notion of coherent OX-module in a way
analogous to this (see [Se1, Def. 2]). Then Oka’s Theorem states that the structure
sheaf of Cn (hence of any complex manifold) is coherent, and this is very hard (see
[GR, §2.5] or [Rem, §7.2]).

The second sort of people who should care are the sort of arithmetic people
who may need to work with non-Noetherian rings, see §3.6.21, or work in non-
archimedean analytic geometry.

6.4.8. Remark: Quasicoherent and coherent sheaves on ringed spaces. We will discuss
quasicoherent and coherent sheaves on schemes, but they can be defined more
generally (see Exercise 6.3.B for quasicoherent sheaves, and [Se1, Def. 2] for co-
herent sheaves). Many of the results we state will hold in greater generality, but
because the proofs look slightly different, we restrict ourselves to schemes to avoid
distraction.

6.4.9. !! Coherence is not a good notion in smooth geometry. The following exam-
ple from B. Conrad shows that in quite reasonable (but less “rigid”) situations, the
structure sheaf is not coherent over itself. Consider the ring O0 of germs of smooth
(C∞) functions at 0 ∈ R, with coordinate x. Now O0 is a local ring. Its maximal
ideal m is generated by x. (Key idea: suppose f ∈ m, and suppose f has a represen-
tative defined on (ε, ε). Then for t ∈ (−ε, ε), f(t) =

∫t
0 f

′(u) du = t
∫1
0 f

′(tv) dv. By
“differentiating under the integral sign” repeatedly, we may check that

∫1
0 f

′(tv) dv
is smooth. We deal with the case t = 0 separately as usual.)

Let φ ∈ O0 be the germ of a smooth function that is 0 for x ≤ 0, and positive
for x > 0 (such as φ(x) = e−1/x2

for x > 0). Consider the map ×φ : O0 → O0. The
kernel is the ideal Iφ of functions vanishing for x ≥ 0. Clearly Iφ is nonzero (for
example, φ(−x) ∈ Iφ), but as m = (x), Iφ = xIφ, so Iφ cannot be finitely generated
or else Nakayama’s Lemma 8.2.9 would be contradicted. (Essentially the same
argument shows that the sheaf of smooth functions on R is not coherent.) This is
why coherence has no useful meaning for smooth manifolds.

6.5 Algebraic aside: The Jordan-Hölder Theorem
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The Jordan-Hölder theorem in group theory is part of a more fundamental
and somehow simpler story. The Jordan-Hölder “yoga” is why you can often fac-
tor some sort of algebraic object into primes or irreducibles, uniquely (in an appro-
priate sense), where each prime/irreducible appears the same number of times no
matter how you factor. From this point of view, it generalizes unique factoriza-
tion of integers; well-definedness of dimension of vector spaces; classification of
finitely-generated abelian groups; classificaiton of finitlely generated mdules over
principal ideal domains unique factorization of ideals in a Dedekind domain; and
the traditional Jordan-Hölder theorem in group theory.

We will be mostly interested in modules over a ring, but there is no harm in
working in a general abelian category C . (This can be readily generalized further,
as in Exercise 6.5.G.)

We say an object M ∈ C is simple (or irreducible) if its only subobjects are 0
and itself. A composition serieshas a (finite) composition series. for M is a (finite)
filtration

(6.5.0.1) 0 = M0 ! M1 ! · · · ! Mn−1 ! Mn = M

such that the quotients Mi+1/Mi are all simple. If M has a composition series, we
say that M has finite length.

6.5.1. The Jordan-Hölder Theorem. — If M has a finite composition series, then all
composition series for M have the same length, and the quotients are all the same, possibly
rearranged.

6.5.2. Definition. We call the length of any of the composition series for M the
length of M, denoted #(M). This notion is well-defined by the Jordan-Hölder
Theorem. But we even have a refined notion: we have the multiplicity with which
each simple object appears in any composition series for M.

If M is not of finite length, we say #(M) =∞.

6.5.3. Example. In the category of abelian groups, the finite-length objects are the
finite abelian groups. The Jordan-Hölder Theorem in this case, applied to Z/nZ,
can be used to give the unique factorization of n.

6.5.4. Proof of the Jordan-Hölder Theorem 6.5.1.
Suppose we have two finite composition series, (6.5.0.1) and

0 = M ′
0 ! M ′

1 ! · · · ! M ′
n ′−1 ! M ′

n ′ = M,

of one object M ∈ C . Make a rectangular array with entries Mi,j := M ′
i ∩M ′′

j , as
in Figure 6.1. Figure 6.2 shows this construction applied to two composition series
for the Z-module Z/(12),

(12) ! (6) ! (2) ! (1) and (12) ! (4) ! (2) ! (1).

6.5.5. Observe that
• Mi,j ⊂ Mi ′,j ′ if i ≤ i ′ and j ≤ j ′,
• Mn,j = M ′

j and Mi,n ′ = Mi,
• M0,j = Mi,0 = 0, and
• Mi,j ∩Mi ′,j ′ = Mmin(i,i ′),min(j,j ′).
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FIGURE 6.1. The rectangular array in the proof of the Jordan-
Hölder Theorem

FIGURE 6.2. A sample “Jordan-Hölder table” for two composi-
tion series for Z/(12)

6.5.A. EXERCISE. Show (by descending induction on i) that Mi,j/Mi,j−1 is 0 or
isomorphic to the simple element M ′

j/M
′
j−1.

Similarly, we have the analogous statement for Mi,j/Mi−1,j. In the rectangu-
lar array, draw a thick line between these two (horizontally or vertically adjacent)
entries if the quotient is nonzero, and label that line with the (isomorphism class
of) the simple group (again, see Figure 6.1).

Consider any 2× 2 subsquare of the array:

Mi,j Mi,j+1

Mi+1,j Mi+1,j+1
= A B

C D

We will see that the thick lines inside the square form one of the following five
patterns (each of which appears in Figure 6.2).
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From A = B ∩ C, we see that (i) if D = B, then A = C, and (ii) if D = C, then
A = B. That takes care of the first three cases.

Suppose next that both D/B and D/C are both nonzero (hence simple). If B =
C, we are in the fourth (“elbow”) case.

Finally, otherwise, we will see that D/B ∼= C/A (and similarly, D/C ∼= B/A),
and we are in the fifth case. Consider the map C → D/B. Then A is precisely
the kernel, from A = B ∩ C (§6.5.5). Thus we have an injection C/A ↪→ D/B. By
simplicity of D/B, either C/A is zero, or this injection is actually an isomorphism
C/A

∼−→ D/B. !

6.5.B. EXERCISE. Prove the Jordan-Hölder Theorem. Hint: notice that the thick-
ened lines can be interpreted as paths from the right side of the table to the bottom
of the table, with one left turn. This will give a bijection between the simple quo-
tients of one filtration, and the simple quotients of the other filtration.

6.5.C. EXERCISE. Show that every subquotient of a finite-length object M is finite
length. Possible approach: suppose the subquotient if M ′′/M ′, where M ′ ⊆ M ′′ ⊆
M. Choose a composition series M• for M. Make a new rectangular table in a
similar way, using the composition series M•, and the filtration 0 ⊆ M ′ ⊆ M ′′ ⊆
M. Think suitably about paths, similar to the proof of the Jordan-Hölder Theorem.

6.5.D. EXERCISE. Show that length is additive in exact sequences: if 0 → M ′ →
M →M ′′ → 0 is an exact sequence, then #(M) = #(M ′) + #(M ′′). (Do not assume
these objects have finite length.)

6.5.E. EXERCISE. Show that any filtration of a finite length module can be refined
into a composition series.

6.5.F. UNIMPORTANT EXERCISE. Show thow that the finite length objects in C
form a full subcategory of C .

The category of groups does not form an abelian category, so Theorem 6.5.1
can’t immediately imply the traditional Jordan-Hölder Theorem for groups. How-
ever, the same proof applies without change, with only one additional input.

6.5.G. EXERCISE (THAT WE WON’T USE). Prove the Jordan-Hölder Theorem for
groups. You will need the second isomorphism theorem: if N1 and N2 are normal
subgroups, then N1N2 forms a normal subgroup, and N2/(N1∩N2) ∼= (N1N2)/N1.

6.5.6. Additional facts particular to modules over a ring.
We now apply these concepts specifically to the category ModA.

6.5.H. EXERCISE. Show that the simple objects of ModA are precisely the objects
of the form A/m, where m is a maximal ideal of A.

6.5.I. EXERCISE. Suppose M is a finite length A-module, and (6.5.0.1) is a compo-
sition series for M, with Mi/Mi−1

∼= A/mi (where the mi are maximal ideals, not
necessarily distinct). Show that M is annihilated by m1 · · ·mn. Equivalently, M is
an A/(m1 · · ·mn)-module.
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Suppose now that the list (m1, . . . ,mn) consists of the distinct maximal ideals
n1, . . . , ns, appearing with multiplicity #1, . . . , #s. (These are the “refined” lengths
mentioned in Definition 6.5.2.)

By the Chinese Remainder Theorem,

A/m1 . . .mn
∼= A/n"11 · · · n"ss ∼= A/n"11 × · · ·A/n"ss .

For 1 ≤ i ≤ s, let ei ∈ A be an element of A so that ei ≡ 1 (mod n"ii ) and
ei ≡ 0 (mod n

"j
j ) for i *= j. The ei exist by the Chinese Remainder Theorem.

6.5.J. EXERCISE. Show that M ∼= e1M × · · · × esM, and eiM is a finite-length
module where all the simple quotients are A/mi. Thus M is a product of pieces,
each with composition series with only one type of “simple factor”.

6.5.K. EXERCISE. Suppose M is a finite length A-module. Show that M is finitely
generated, and SuppM consists of finitely many points of SpecA, all closed. (The
converse will be proved in Exercise 6.6.X(a).) We thus have a notion of the “length
of M at each of these cloesd points”.

6.5.7. Applying this language to schemes. We next consider the category QCohX of
quasicoherent sheaves on a scheme X. We have the notion of the length #(F ) of a
finite-length quasicoherent sheaf on X.

6.5.L. EXERCISE. Show that the simple objects of QCohX are the structure sheaves
of closed points.

6.5.M. EXERCISE. Suppose that F is a finite length element of QCohX. Show that
F is finite type, and Supp F consists of finitely many points of X, all closed. (The
converse will be proved in Exercise 6.6.X(b).) Explain how to define the length of
a F at one of the points of Supp F .

6.5.8. Definition. The length of a scheme X is the length of the structure sheaf OX

(in QCohX). A scheme X is finite length or Artinian if OX is finite length.

6.6 Visualizing schemes: Associated points and zerodivisors

The theory of associated points of a module refines the notion of support (§4.1.7).
Associated points will help us understand and visualize nilpotents, and generalize
the notion of “rational functions” to non-integral schemes. They are useful in ways
we won’t use, for example through their connection to primary decomposition.
They might be most useful for us in helping us understand and visualize (non-
)zerodivisors, which will come up repeatedly, through effective Cartier divisors
and line bundles, regular sequences, depth and Cohen-Macaulayness, and more.

There is no particular reason to discuss associated points now, and this section
can be read independently, at leisure. But it is a good opportunity to practice
visualizing geometry, and to learn some useful algebra.

6.6.1. Motivation. Figure 6.3 is a sketch of a scheme X. We see two connected com-
ponents, and three irreducible components. The irreducible components of X have


